TEST CODE-2429

Q.No.	Set A	Set B	Set C	Set D	45	Q.34/C	Q.11/B	Q.50/A	Q.42/B
1	Q.49/D	Q.21/D	Q.55/B	Q.22/C	46	Q.35/C	Q.38/A	Q.30/B	Q.13/C
2	Q.31/A	Q.49/B	Q.35/C	Q.32/D	47	Q.11/B	Q.20/A	Q.6/B	Q.6/B
3	Q.25/B	Q.22/D	Q.25/C	Q.34/B	48	Q.36/D	Q.48/C	Q.23/C	Q.27/C
4	Q.57/C	Q.6/B	Q.4/C	Q.40/A	49	Q.28/D	Q.51/A	Q.37/D	Q.18/C
5	Q.14/C	Q.24/A	Q.34/C	Q.44/A	50	Q.51/C	Q.46/D	Q.41/C	Q.4/B
6	Q.9/B	Q.16/D	Q.49/B	Q.28/A	51	Q.19/C	Q.28/B	Q.52/D	Q.26/B
7	Q.8/C	Q.7/D	Q.33/A	Q.29/C	52	Q.42/D	Q.33/D	Q.13/B	Q.30/B
8	Q.30/D	Q.9/B	Q.46/A	Q.39/B	53	Q.1/C	Q.1/A	Q.56/A	Q.56/B
9	Q.41/C	Q.35/A	Q.38/D	Q.15/A	54	Q.2/B	Q.2/D	Q.57/A	Q.57/C
10	Q.52/A	Q.52/C	Q.19/C	Q.8/A	55	Q.3/C	Q.3/D	Q.58/D	Q.58/D
11	Q.45/A	Q.31/D	Q.32/A	Q.35/A	56	Q.4/C	Q.56/C	Q.1/A	Q.1/A
12	Q.39/B	Q.12/D	Q.39/A	Q.12/D	57	Q.5/A	Q.57/B	Q.2/B	Q.2/C
13	Q.46/B	Q.17/B	Q.47/D	Q.9/A	58	Q.6/D	Q.58/D	Q.3/B	Q.3/C

[JEE MAINS LEVEL]

1. (A)

$$
\mathrm{f}=\frac{\mathrm{R}}{2}=\frac{6}{2}=3 \mathrm{~m} \quad \Rightarrow \frac{\mathrm{~d}}{\mathrm{f}}=\frac{\mathrm{D}}{\mathrm{R}}
$$

$$
\mathrm{d}=\frac{\mathrm{Df}}{\mathrm{R}}=\frac{864100 \times 3}{9290000}=0.027 \mathrm{~m}
$$

$$
=27 \mathrm{~mm}
$$

2. (A) $\mathrm{u}=+20 \mathrm{~cm}, \quad \mathrm{f}=+20 \mathrm{~cm}$

$\frac{1}{\mathrm{v}}+\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}} \quad \Rightarrow \frac{1}{\mathrm{v}}+\frac{1}{20}=\frac{1}{20} \Rightarrow \frac{1}{\mathrm{v}}=0 \Rightarrow \mathrm{v}=\infty$
3. (B) $u=-30, v=10 \mathrm{~cm}$

$$
\frac{1}{10}-\frac{1}{30}=\frac{1}{\mathrm{f}} \Rightarrow \mathrm{f}=15 \mathrm{~cm}
$$

4. (C)
$s_{1}=y+x / \mu$
$\Rightarrow \mu \mathrm{s}_{1}=\mu \mathrm{y}+\mathrm{x}$
$\mathrm{s}_{2}=\mathrm{x}+\mu \mathrm{y}$
from (1) \& (2)

$\mu \mathrm{s}_{1}=\mathrm{s}_{2} \Rightarrow \mu=\frac{\mathrm{s}_{2}}{\mathrm{~s}_{1}}$
5. (B) $\mu=\frac{\delta_{m}\left(\frac{\mathrm{~A}+\delta_{\mathrm{m}}}{2}\right)}{\delta_{\mathrm{m}}(\mathrm{A} / 2)}$, put $\delta_{\mathrm{m}}=180-2 \mathrm{~A}$
6. (D) $\mathrm{r}_{1}=\theta_{\mathrm{c}} \quad \Rightarrow \delta_{\mathrm{m}} \mathrm{r}_{2}=1 / \mu=1 / \sqrt{2} \quad \Rightarrow \mathrm{r}_{2}=45$
$\mathrm{A}=\mathrm{r}_{1}+\mathrm{r}_{2} \quad \Rightarrow \mathrm{r}_{1}=\mathrm{A}-\mathrm{r}_{2}=75-45=30$
$\delta_{m} \mathrm{i}=\mu \delta_{\mathrm{m}} \mathrm{r}_{1}=\sqrt{2} \times \sin 30^{\circ}=\frac{1}{\sqrt{2}}$
$\mathrm{i}=45^{\circ}$
7. (A) $\mathrm{i}_{1}=\mathrm{i}_{2}=60^{\circ}$,

$$
\mathrm{A}=60^{\circ}
$$

$\delta_{m}=i_{1}+i_{2}-A=60^{\circ}+60^{\circ}-60^{\circ}=60^{\circ}$
8. (D) The ray will strike at O_{1} again after internal reflections, if angle of refraction at O_{1} is 45° Snell's law at O_{1}.

$\sin \theta=\mu \sin 45^{\circ}=\mu / \sqrt{2}$
For internal reflection at $\mathrm{O}_{2} . \quad \mathrm{i}>\theta_{\mathrm{C}}$
$\sin \mathrm{i}>\sin \theta_{\mathrm{C}}$
$\sin \mathrm{i}>\frac{1}{\mu}$
Ray will strike again at O_{1} after internal reflection, if $\angle \mathrm{i}=45^{\circ}$
$\sin 45^{0}>\frac{1}{\mu} \Rightarrow \frac{1}{\sqrt{2}}>\frac{1}{\mu}$, or $\mu>\sqrt{2}$
Critically $\mu=\sqrt{2}$
From equation (i), $\sin \theta=\frac{\mu}{\sqrt{2}}=\frac{\sqrt{2}}{\sqrt{2}}=1$
$\theta=90^{\circ}$
9. (B) The image is erect and magnified. The mirror is concave
$\mathrm{m}=\frac{\mathrm{I}}{\mathrm{O}}=-\frac{\mathrm{v}}{\mathrm{u}} \Rightarrow \frac{6}{1}=-\frac{\mathrm{v}}{(-\mathrm{u})}$
$\mathrm{v}=+6 \mathrm{u}$
$\frac{1}{v}+\frac{1}{u}=\frac{1}{f} \Rightarrow \frac{1}{6 u}+\frac{1}{(-u)}=\frac{1}{f}$
$f=-\frac{6 u}{5}$
$f-u=-\frac{6 u}{5}-(-u)=-\frac{u}{5}$
$|\mathrm{f}-\mathrm{u}|=\frac{\mathrm{u}}{5}$
10. (C) The mirror will be convex because image is erect and diminished. MM_{1} will be the position of mirror.
$\mathrm{OO}_{1}=2 \mathrm{II}_{1}$

Join I and F and produce.
Draw OM parallel to $\mathrm{O}_{1} \mathrm{~F}$,
Draw MM_{1} perpendicular to $\mathrm{O}_{1} \mathrm{~F}$,
$\frac{\mathrm{MM}_{1}}{\mathrm{II}_{1}}=\frac{\mathrm{OO}_{1}}{\mathrm{II}_{1}}=2=\frac{\mathrm{M}_{1} \mathrm{~F}}{\mathrm{I}_{1} \mathrm{~F}}$
Given $\mathrm{O}_{1} \mathrm{~F}=2 \mathrm{u}$ and $\quad \frac{\mathrm{O}_{1} \mathrm{I}_{1}}{\mathrm{I}_{1} \mathrm{~F}}=3$
So, that $\mathrm{O}_{1} \mathrm{I}_{1}=3 \mathrm{u} / 2$

and $\mathrm{I}_{1} \mathrm{~F}=\mathrm{u} / 2$
From eqn. (i)
$\mathrm{M}_{1} \mathrm{~F}=2 \mathrm{I}_{1} \mathrm{~F}=\mathrm{u}$
and $\mathrm{O}_{1} \mathrm{M}_{1}=\mathrm{O}_{1} \mathrm{~F}-\mathrm{M}_{1} \mathrm{~F}=\mathrm{u}$
11. (B)

For I_{1}, virtual object will be between P and F

For I_{2}, virtual object will be between F and C
12. (D) For A
$u=-3 m v_{1}=?, f=-1 m$
$\frac{1}{u_{1}}=\frac{1}{f}-\frac{1}{u}=\frac{1}{-1}-\frac{1}{-3}=\frac{1}{3}-1=-\frac{2}{3}$

$$
\text { or } \quad v_{1}=-\frac{3}{2}
$$

For B

$$
\begin{aligned}
& \frac{1}{v_{2}}=\frac{1}{-1}-\frac{1}{-5} \quad \text { or } \quad \frac{1}{v_{2}}=\frac{1}{5}-1=-\frac{4}{5} \\
& \text { or } \quad v_{2}=-\frac{5}{4} m \\
& \text { Now, } \quad v_{1}-v_{2}=\frac{3}{2}-\left(-\frac{5}{4}\right) \\
& =-\frac{3}{2}+\frac{5}{4}=-\frac{1}{4} m=-0.25 \mathrm{~m}
\end{aligned}
$$

Again, $\frac{l_{1}}{Q}=-\frac{v_{1}}{u}$
or $\quad \mathrm{I}_{1}=-\frac{\mathrm{v}_{1}}{u} \mathrm{O}=-\left(\frac{-3}{2}\right)\left(\frac{-1}{3}\right)=-1 \mathrm{~m}$
Again, $\frac{\mathrm{I}_{2}}{\mathrm{O}}=-\frac{\mathrm{v}_{2}}{\mathrm{u}}$

$$
\text { or } \quad \mathrm{I}_{2}=-\left(-\frac{5}{4}\right)\left(\frac{1}{-5}\right) 2=-0.5 \mathrm{~m}
$$

13. (D) Mirror can be shifted to new position $\mathrm{C}^{\prime} \mathrm{D}^{\prime}$.

Distances are shown in the figure below.

Image will be at equal distance from the mirror $\mathrm{C}^{\prime} \mathrm{D}^{\prime}$ as the object is.
Image distance from $\mathrm{C}^{\prime} \mathrm{D}^{\prime}$

$$
=10+\frac{5}{3 / 2}=10+\frac{10}{3}=\frac{40}{3} \mathrm{~cm}
$$

Separation between object and image is $\frac{80}{3} \mathrm{~cm}$.
14. (C)

Sol.

For class slab
shift $=t\left(1-\frac{1}{\mu \mathrm{R}}\right)$
$=3.5\left(1-\frac{\frac{1}{7 / 4}}{4 / 3}\right)=x$
For water surface
Depth $=8+(3.5-\mathrm{x})$
So final image from surface
$\Rightarrow \frac{\text { Realdepth }}{\mu_{\omega}}=\frac{8+(3.5-\mathrm{x})}{4 / 3}$
15. (C)

Sol. Lets bubble is x distance from $1^{\text {st }}$ surface
So $10=\frac{x}{\mu}$
From $2^{\text {nd }}$ surface
$6=\frac{2 \mu-x}{\mu}$
Solving (1) and (2) we get $\mu=1.5$
16. (A)

Sol. As $\frac{1}{\mathrm{v}}+\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}}$
Diff. w.r.t. time
$-\frac{d v}{d t}\left(\frac{1}{v^{2}}\right)-\frac{d u}{d t}\left(\frac{1}{u^{2}}\right)=0$
$\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mathrm{du}}{\mathrm{dt}}\left(\frac{\mathrm{v}}{\mathrm{u}}\right)^{2}$
As from (1)
$\frac{1}{\mathrm{v}}-\frac{1}{30}=\frac{1}{20} \Rightarrow \frac{1}{\mathrm{v}}=\frac{1}{10}\left(\frac{1}{2}+\frac{1}{3}\right)=\frac{5}{60}$
$\mathrm{V}=12 \mathrm{~cm}$
So from $2^{\text {nd }}$
$\frac{\mathrm{dv}}{\mathrm{dt}}=(1)\left[\frac{12}{30}\right]$
17. (A)

Sol. From shells law

$$
\begin{aligned}
& \text { (1) } \sin 45=\mu \sin 30^{\circ} \\
& \mu=\frac{2}{\sqrt{2}} \Rightarrow \sqrt{2}
\end{aligned}
$$

18. (B)
19. (D) $\mathrm{i}_{1}=\mathrm{i}_{2}=\frac{3}{4} \mathrm{~A}=\frac{3}{4} \times 60^{\circ}=45^{\circ}$

$$
\delta=\mathrm{i}_{1}+\mathrm{i}_{2}-\mathrm{A}=45^{\circ}+45^{\circ}-60^{\circ}=30^{\circ}
$$

20. (B)

Sol.

As $\mathrm{i}=\mathrm{e}$
So $\mathrm{r}_{1}=\mathrm{r}_{2}=(\mathrm{r}$ say $)$
$\mathrm{r} 1+\mathrm{r} 2=\mathrm{A}$
$\mathrm{r}=\frac{\mathrm{A}}{2}=45^{\circ}$
For $1^{\text {st }}$ refraction
(1) $\sin 90=(\sin 45) \mu$

$$
\mu=\sqrt{2}
$$

21. (C)

Sol.

For $1^{\text {st }}$ refraction
(1) $\sin 90=\mu \sin r_{1}$
$\sin \mathrm{r}_{1}=\frac{1}{\mu}$
$r_{1}=\sin ^{-1}\left(\frac{1}{\mu}\right)$
Now $r_{1}+\theta_{C}=A$ and $r_{1}=\theta_{C}$
So $A=20 r_{1} \Rightarrow \sin ^{-1}\left(\frac{1}{\mu}\right)$
22. (C)

Sol.

As for $\mathrm{i}=45^{\circ}$
It must be equal to θ_{C} TIR
So $\sin 45=\frac{1}{\mu}$
$\mu=\sqrt{2}$
23. (D)

Sol. For $1^{\text {st }}$ reflection
$\theta_{1}=60^{\circ}$
For $1^{\text {st }}$ refraction
$\frac{5}{3}(\sin 30)=\frac{4}{3} \sin \theta_{2}$
$\theta_{2}=\sin ^{-1}\left(\frac{5}{8}\right)$
For TIR at P
$\sin \theta_{1}=\sin 60=\frac{1}{\mu R}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{1}{\mu_{\mathrm{g}} / \mu_{\omega}}$
$\frac{\sqrt{3}}{2}=\frac{\mu_{\omega}}{5 / 3} \Rightarrow \mu_{\omega}=\frac{5}{2 \sqrt{3}}$
24. (A)

Sol. For $d(\sin i) \mu 0=\sin \mu$
$\frac{\sin \mathrm{i}}{\sin \mathrm{r}}=\frac{\mu}{\mu_{0}}$
25. (A)

Since the refractive index is changing, the light cannot travel in a straight line in the liquid as shown in option (c) and (d). Initially, it will bend towards normal and after reflecting from the bottom it will bend away from the normal as shown in the figure.
26. (A) $\quad \delta_{\mathrm{m}}(\mu-1) \mathrm{A}=(1.5-1) \frac{\mathrm{r}}{2}$

$$
[\mathrm{A}=\mathrm{r} / 2] \text { for min. dev. }
$$

$\Rightarrow \delta_{\mathrm{m}}=\mathrm{r}$
27. (C) $\quad\left(\mu_{1}-1\right) \mathrm{A}_{1}=\left(\mu_{2}-1\right) \mathrm{A}_{2}$

$$
\Rightarrow(1.54-1) 4^{\circ}=(1.72-1) \mathrm{A}_{2}
$$

$$
\Rightarrow \mathrm{A}_{2}=3^{\circ}
$$

28. (C) $\quad \theta>\mathrm{C}$

$$
\begin{aligned}
& \Rightarrow 45^{\circ}>\sin ^{-1} \Rightarrow \sin 45^{\circ}>1 / \mu \\
& \frac{1}{\sqrt{2}}>\frac{1}{\mu} \Rightarrow \mu>\sqrt{2}
\end{aligned}
$$

SECTION - A

29. (C) $\Delta \mathrm{x}=2 \mu \mathrm{t}-\frac{\lambda}{2}=(2 \mathrm{n}-1) \frac{\lambda}{2}$

$$
\begin{aligned}
& 2 \mu \mathrm{t}=\mathrm{n} \lambda \\
& \lambda=\frac{2 \mu \mathrm{t}}{\mathrm{n}}=\frac{2 \times 1.61 \times 0.5 \times 10^{-6}}{\mathrm{n}}=\frac{1610}{\mathrm{n}} \mathrm{~nm}
\end{aligned}
$$

For $\mathrm{n}=3, \lambda=503 \mathrm{~nm}$
For $\mathrm{n}=4, \lambda=402.5 \mathrm{~nm}$
30. (C) $\frac{4 \lambda_{1} \mathrm{D}}{\mathrm{d}}=\frac{(2 \times 5-1)}{2} \frac{\lambda \mathrm{D}}{\mathrm{d}}$

Put $\lambda_{1}=6300 \AA$ to get $\lambda=5600 \AA$
31. (C) Apply $I=\frac{I_{\text {central maximum }}}{2}[1+\cos \phi)$
$\Rightarrow \frac{\mathrm{I}_{0}}{2}=\frac{\mathrm{I}_{0}}{2}[1+\cos \phi] \Rightarrow \cos \phi=0 \Rightarrow \phi=\pi / 2$
Now $\phi=\frac{2 \pi}{\lambda} \Delta x$, and $\Delta x=d y / D$
Solve to get $\mathrm{y}=7.2 \times 10^{-5} \mathrm{~m}$
32. (B)

Sol. At midpoint of AB
$\Delta x=3 \lambda$
at ∞
$\Delta \mathrm{x}=0$
So on + ve x axis no of $\max =3$ on other side $(-v e \mathrm{x}$ axis $)=$ 3.

Total $=6$.
33. (B) $\frac{n D \lambda_{\mathrm{r}}}{\mathrm{d}}=\frac{(\mathrm{n}+1) \mathrm{D} \lambda_{\mathrm{b}}}{\mathrm{d}}$

$$
\Rightarrow \frac{\mathrm{n}+1}{\mathrm{n}}=\frac{78}{52} \Rightarrow \mathrm{n}=2
$$

34. (C) \quad For (I) : $\Delta x=2 \mu \mathrm{t}-\frac{\lambda}{2}=2 \times 1.4 \times \frac{5 \lambda}{4}-\frac{\lambda}{2}=3 \lambda$

So constructive interference
For (II): $\quad \Delta \mathrm{x}=2 \times 2 \times \frac{3 \lambda}{2}-\frac{\lambda}{2}=\frac{11 \lambda}{2}$
So destructive interference
For (III): $\Delta \mathrm{x}=2 \mu \mathrm{t}=2 \times 2 \times \frac{\lambda}{2}=2 \lambda$
So constructive interference.
35. (C) Slob will only produce shift.
36. (D)

Sol.

At P
$\Delta \mathrm{x}=3 \mathrm{a}$
At θ
$\Delta \mathrm{x}=0$
So in give circle.
No of maxima $=\frac{3 \mathrm{a}}{\mathrm{a} / 5}=15$
For complex circle $\Rightarrow m=15 \times 4=60$.
37. (C) Shifting: $\delta=(\mu-1) \mathrm{t} D / \mathrm{d}=\frac{30 \lambda \mathrm{D}}{\mathrm{d}}$

$$
\Rightarrow \mathrm{t}=\frac{30 \lambda}{\mu-1}=\frac{30 \times 4800 \times 10^{-10}}{1.6-1}=2.4 \times 10^{-5} \mathrm{~m}
$$

38. (C) $\quad y_{n}=n\left(\frac{D \lambda}{d}\right) \quad$ and $\quad y_{n}^{\prime}=n^{\prime}\left(\frac{D \lambda^{\prime}}{d}\right)$

Equating y_{n} and $\mathrm{y}^{\prime}{ }_{\mathrm{n}}$, we get, $\frac{\mathrm{n}}{\mathrm{n}^{\prime}}=\frac{\lambda^{\prime}}{\lambda}=\frac{900}{750}=\frac{6}{5}$
Hence the first position at which overlapping occurs is

$$
y_{6}=y^{\prime}=\frac{6(2)\left(750 \times 10^{-9}\right)}{2 \times 10^{-3}}=4.5 \mathrm{~mm}
$$

39. (C)

Sol. As $\mathrm{I}_{\text {max }}=4 \mathrm{I}_{0}$
Now for $\mathrm{I}=2 \mathrm{I}_{0}$
$2 \mathrm{I}_{0}=\mathrm{I}_{0}+\mathrm{I}_{0}+2 \sqrt{\mathrm{I}_{0}} \sqrt{\mathrm{I}_{0}} \cos \phi$
$\cos \phi=0$
$\phi=\frac{\pi}{2}$
$\Delta \mathrm{x}=\frac{\lambda}{2 \pi} \Delta \phi \Rightarrow \frac{\lambda}{2 \pi} \times \frac{\pi}{2}$
$\Delta x=\frac{\lambda}{4}$
For slab $\Delta \mathrm{x}=\mathrm{t}\left(1-\frac{1}{\mu}\right)$
Solving (1) and (2) we get
$\mathrm{t}=\frac{\lambda}{2}$
40. (B)

Sol. As $\frac{\beta}{\mathrm{D}}=2 \times \frac{\pi}{180}=\frac{\pi}{90}$ and $\frac{\lambda \mathrm{D} / \mathrm{d}}{\mathrm{D}}=\frac{\pi}{90}$
$\frac{\lambda}{d}=\frac{\pi}{90}=0.035$
41. (C) Let nth dark of 400 nm coincides with mth dark of 600 nm , then we can get (for complete darkness)

$$
4 n+2=6 m+3 \Rightarrow 4 n=6 m+1
$$

odd \neq even \quad (not possible)
42. (A)
43. (D)

Sol. As $\mathrm{I}_{\min }=\left(\sqrt{\mathrm{I}_{1}}-\sqrt{\mathrm{I}_{2}}\right)^{2}$
Now $\mathrm{I}_{1} \neq \mathrm{I}_{2}$
So $\mathrm{I}_{\text {min }} \neq 0$
44. (C)

Sol. Path difference due to slab

$$
t\left(1-\frac{1}{\mu_{2} / \mu_{1}}\right) \Rightarrow t\left(1-\frac{\mu_{1}}{\mu_{2}}\right)
$$

Now $\Delta \phi=\frac{2 \pi}{\lambda} \Delta \mathrm{x}$
$\Rightarrow \frac{2 \pi}{\lambda} \mathrm{t}\left(1-\frac{\mu_{1}}{\mu_{2}}\right)$
45. (C)

Sol. For maxima at 0 difference of path difference due to slab $=$ n λ
$\mathrm{t}\left(\mu_{1}-1\right)-\mathrm{t}\left(\mu_{2}-1\right)=\mathrm{n} \lambda \mathrm{t}\left(\mu_{1}-\mu_{2}\right)=\mathrm{n} \lambda$
$\mathrm{n}=2 \Rightarrow \lambda=624 \mathrm{~nm}$
$\mathrm{n}=3 \Rightarrow \lambda=416 \mathrm{~nm}$
46. (A)

Sol. For minima at P
$\Delta \phi=(2 n-1) \pi$
47. (C) $2 \mu \mathrm{t}=\mathrm{n} \lambda \Rightarrow \mathrm{t}=\frac{\lambda}{2 \mu}=\frac{500}{2 \times 1.25}=200 \mathrm{~nm}$
48. (B) $2 \mu \mathrm{~d}=\left(\frac{2 \mathrm{n}-1}{2}\right)-\lambda \Rightarrow \lambda=\frac{4 \mu \mathrm{~d}}{2 \mathrm{n}-1}$
$=\frac{4 \times 1.4 \times(10000)}{2 n-1}=\frac{56000}{2 n-1} \AA$
For $\mathrm{n}=5, \lambda=6222 \AA, \quad$ For $\mathrm{n}=6, \lambda=5091 \AA$
For $\mathrm{n}=7, \lambda=4308 \AA$
49. (A) $\beta \propto \lambda, \quad \frac{\lambda_{2}}{\lambda_{1}}=\frac{\beta_{2}}{\beta_{1}}=1.1$

$$
\lambda_{2}=1.1 \lambda_{1}=1.1 \times 5890=6479 \AA
$$

50. (C) $\frac{I_{\max }}{I_{\min }}=\left(\frac{3 a+a}{3 a-a}\right)^{2}=4: 1$
51. (B) $\Delta x=\frac{b y}{D}=\frac{b(b / 2)}{D}=\frac{b^{2}}{2 D}$
52. (C)

Sol. $\frac{I_{1}}{I_{2}}=\frac{25}{16}$

$$
\begin{aligned}
& \frac{I_{\max }}{I_{\min }}=\frac{\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}}{\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}}=\left(\frac{\sqrt{\frac{I_{1}}{I_{2}}}+1}{\sqrt{\frac{I_{1}}{I_{2}}}+1}\right)^{2} \\
& =\left(\frac{9}{1}\right)^{2}=81: 1
\end{aligned}
$$

53. (D) For point P on screen, path different between waves

$$
\begin{aligned}
& \Delta x=\left(\mathrm{S}_{2} \mathrm{P}-\mathrm{t}+\mu \mathrm{t}\right)-\left(\mathrm{S}_{1} \mathrm{P}+\mathrm{d} \sin \theta\right) \\
& \Rightarrow \quad \Delta \mathrm{x}=\left(\mathrm{S}_{2} \mathrm{P}-\mathrm{S}_{1} \mathrm{P}\right)+(\mu-1) \mathrm{t}-\mathrm{d} \sin \theta \\
& \Rightarrow \Delta \mathrm{x}=\frac{\mathrm{dy}}{\mathrm{D}}+(\mu-1) \mathrm{t}-\mathrm{d} \sin \theta
\end{aligned}
$$

For central maxima : $\Delta x=0$
we can get any value of $y(+v e, 0$ or -ve$)$ depending on values of other parameter.
54. (A) For central fringe to obtain at O

$$
\text { Put } \Delta x=0 \text { and } y=0 \Rightarrow(\mu-1) t=d \sin \theta
$$

55. (B)
56. (C)
57. (C)
58. (A) Without inserting the slab, path difference at P,

$$
\Delta x=\frac{\mathrm{yd}}{\mathrm{D}}=\frac{0.15 \times 10^{-3} \times 2 \times 10^{-3}}{2}=1.5 \times 10^{-7} \mathrm{~m}
$$

Corresponding phase difference at P,

$$
\phi=\left(\frac{2 \pi}{\lambda}\right)(\Delta x)=\left(\frac{2 \pi}{6000 \times 10^{-10}}\right)\left(1.5 \times 10^{-7}\right)=\frac{\pi}{2}
$$

$\therefore \frac{\phi}{2}=\frac{\pi}{4}$
\therefore Intensity at $P, \quad \mathrm{I}=4 \mathrm{I}_{0} \cos ^{2}(\phi / 2)=2 \mathrm{I}_{0}$
Phase difference after placing the glass sheet,

$$
\begin{aligned}
& \phi^{\prime}=\phi+\frac{2 \pi}{\lambda}(\mu-1) \mathrm{t} \\
= & \frac{\pi}{2}+\frac{2 \pi}{6000 \times 10^{-10}}(1.5-1)\left(8000 \times 10^{-10}\right)=\frac{11 \pi}{6}
\end{aligned}
$$

The intensity at P is now,
$I=I_{0}+\eta I_{0}+2 \sqrt{\eta I_{0}^{2}} \cos \frac{11 \pi}{6}=2 I_{0}$ (given)
Solving this equation, we get $\eta \square=\frac{5-\sqrt{21}}{2}$

